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1 | Introduction
This report has the purpose of defining and then analysing four different strategies to complete an

orbital transfer between two assigned points on two completely different orbits. After characterising
the orbits and the possible trajectories, at the end of the report various considerations will be made to
find out which of them is optimal, first taking into account just the time to complete the transfer, then
just the fuel that needs to be loaded on the spacecraft (in terms of absolute impulse) and then both
requirements, to try and find an acceptable trade-off.

To achieve the scope of this report, different algorithms to calculate the required parameters were
implemented in the MATLAB® environment 1, these algorithms will be attached to the report in order
to allow for the verification of the numerical results contained within this report. After plotting the
initial and final orbits in order to see their shape and position relative to each other, three transfer
strategies will be defined, together with the standard strategy provided by the assignment.

The figure below (1.1) shows the reader the situation that will be taken in consideration in the
following pages of this report, with the initial orbit shown in white and the final orbit shown in a light
blue color. In addition to the orbits, the initial and final points required by the assignment and apsidal
points are shown.

Figure 1.1: 3D Representation of the initial and final orbits

1To ensure compatibility and to avoid the insurgence of problems when running the algorithms it is recommended
to use the latest MATLAB® build with the following add-ons installed: Symbolic Math Toolbox, Optimization Toolbox,
Image Processing Toolbox, Image Acquisition Toolbox, Curve Fitting Toolbox
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2 | Initial orbit characterisation

2.1. Orbital parameters
For the initial orbit, the Cartesian elements that define a position along the orbit were provided as data:

Initial Cartesian Orbital Parameters

𝑋 (km) 𝑌 (km) 𝑍 (km) 𝑣𝑥 ( 𝑘𝑚𝑠 ) 𝑣𝑦 ( 𝑘𝑚𝑠 ) 𝑣𝑧 ( 𝑘𝑚𝑠 )

−3719.30610 −9567.41250 −1666.47840 5.34000 −2.00800 −1.80800

Starting from the cartesian elements of the initial position, the Keplerian elements of the initial orbit
were obtained using the car2kep function.

Initial Keplerian Orbital Parameters

𝑎 (km) 𝑒 𝑖 (deg) Ω (deg) 𝜔 (deg) 𝜃 (deg)

9759.46565 0.07572 19.68167 41.76403 56.33149 152.07961

2.2. Discussion of the orbital parameters
From the Keplerian orbital parameters the following information can be deduced:

• The semi-major axis (𝑎) can be useful to classify the size of the orbit. After a quick calculation
it’s easily found that the altitude of both the perigee and apogee exceed 2000km (which is
considered as the upper limit for LEO orbits). More precisely the altitude at the perigee is about
2600 km which can still be classified as in the LEO region, however the apogee altitude is more
or less 4100 km which is closer to the start of the MEO region.

• Eccentricity (𝑒) describes the elongation of the orbit compared to a circular one. Since for
elliptical orbits 𝑒 ranges from 0 (excluded) to 1 (excluded), the initial orbit is very close to being
circular.

2.3. Graphical Representations
Note that the instant defined by 𝑡 = 0𝑠 is associated to the starting position along the orbit (𝜃) marked
in the 3D representation by the hollow circle.
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3 | Final orbit characterisation
3.1. Orbital parameters
For the target orbit, the data provided is the Keplerian elements that characterize the orbit:

Final Keplerian Orbital Parameters

𝑎 (km) 𝑒 𝑖 (deg) Ω (deg) 𝜔 (deg) 𝜃 (deg)

12060.0 0.33870 49.41188 80.67245 140.03089 47.84197

Starting from the Keplerian elements of the target orbit, it’s possible to go back to Cartesian elements
that indicate the target position and velocity along the orbit by using the kep2car function.

Final Cartesian Orbital Parameters

𝑋 (km) 𝑌 (km) 𝑍 (km) 𝑣𝑥 ( 𝑘𝑚𝑠 ) 𝑣𝑦 ( 𝑘𝑚𝑠 ) 𝑣𝑧 ( 𝑘𝑚𝑠 )

−631.63647 −8628.70552 −904.86773 4.82430 −1.29145 −5.80084

3.2. Discussion of the orbital parameters
From the final Keplerian orbital parameters the following information can be deduced:

• The perigee and apogee altitudes of the final orbit are respectively around 1600 km and 9800
km. Thus we can infer that the orbit ranges from a LEO region to a MEO region, as the perigee
is below the 2000 km upper limit for LEO and within the MEO region at its apoagee (the MEO
region ranges between 5000 and 20000km). The semi-major axis (𝑎) is greater than that of the
initial orbit, however the perigee radius is smaller than the one from the initial orbit.

• Eccentricity (𝑒): This final orbit has a more pronounced elliptical shape compared to the initial
one. This can easily be noticed by looking at the difference between the perigee and apogee
radius.

3.3. Graphical Representations
Note that the instant defined by 𝑡 = 0𝑠 is associated to the starting position along the orbit (𝜃) marked
on the 3D representation by the hollow circle.
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4 | Transfer trajectory definition and
analysis

4.1. Methods to achieve the final position and velocity
In order to reach the target position it is necessary to modify the Keplerian elements of the initial

orbit accordingly to get from the initial orbit to the final one. In particular it’s necessary to modify the
values of:

• 𝑎 from 9759.46565 to 12060.0 km,

• 𝑒 from 0.07572 to 0.33870,

• 𝑖 from 19.68167 to 49.41188 degrees,

• Ω from 41.76403 to 80.67245 degrees,

• 𝜔 from 56.33149 to 140.03089 degrees.

To complete this transfer between two orbits so different in their Keplerian elements at least three
maneuvers will be required, with many different combinations of maneuvers being possible. In
this report four methods will be shown and analysed, including a standard method provided by the
assignment.

Given that maneuvers are easier and less costly to achieve at apsidal points, once the spacecraft is
on the target orbit, the final point will be reached without the need of another impulse, for this reason
the proposed strategies will be considered completed once the target orbit is reached.

4.2. Possible transfer strategies

4.2.1. Standard Method: Change of plane → Change of Periapsis Argument
at the best intersection point → Transfer from Perigee to Apogee

This method consists of a standard transfer strategy, provided by the assignment. It is composed of
a change of the orbital plane as the first maneuver, followed by a change of the periapsis argument to
align the obtained orbit with the final one.
Then, to reach the final orbit, a bi-tangent transfer maneuver starting from the perigee of the orbit
obtained with the two previous maneuvers will be used to reach the final size and shape. This maneuver
will reach the apogee of the target orbit, to then let the spacecraft freely reach the destination point.

The variations of all the Keplerian elements during the trajectory, the values of the impulses and the
time required to complete this strategy can be seen in table A.2. A 3D representation of the initial/final
orbits and of the spacecraft’s trajectory can be seen in figure 4.1.
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4.2.2. Method 1: Change of plane → Orbit Circularization → Transfer from
Perigee to Apogee

This method is made out of three different maneuvers: as with all four strategies, the first one
changes the orbital plane, to align with the final orbit’s plane, then a circularization of the tilted orbit
will be completed to avoid having to change the periapsis argument of the transfer orbit, because a
circular orbit can have the perigee on whatever point is needed, thanks to the non-changing radius.
After the second maneuver is completed, a transfer from the perigee to the apogee will be carried out,
just like in the standard method.

The choice of circularizing the orbit instead of changing the periapsis argument is due to the low
eccentricity of the initial orbit. By carrying out this maneuver, the Δ𝑉 may be lower and this strategy
is used to check if that’s true or not.

The variation of all the Keplerian elements during the trajectory, the values of the impulses and the
time required to complete this strategy can be seen in table A.4. A 3D representation of the initial/final
orbits and of the spacecraft’s trajectory can be seen in figure 4.2.

4.2.3. Method 2: Change of plane → Orbit Circularization → Transfer from
Apogee to Perigee

From the data obtained by analyzing the first proposed method, it’s clear that a lot of time is being
wasted to reach the maneuvering point on the circular orbit as doing the transfer from the perigee to
the apogee implies that the spacecraft needs to travel over a big part of the circular orbit. Doing the
transfer the other way around, so from apogee to pergigee, significantly decreases the time needed to
reach the maneuvering point, thus reducing the total Δ𝑡.

The difference in Δ𝑉 due to the final maneuver happening at the perigee, where the speed is higher,
should be balanced by the lower difference in speed between the circular orbit and the apogee of the
bi-tangent transit orbit.

The variation of all the Keplerian elements during the trajectory, the values of the impulses and the
time required to complete this strategy can be seen in table A.6. A 3D representation of the initial/final
orbits and of the spacecraft’s trajectory can be seen in figure 4.3.

4.2.4. Method 3: Change of plane → Orbit Circularization → Bi-elliptical
Transfer

In this last method, just like in Method 1 and 2, a circularization will be carried out as it may be
more convenient due to the low eccentricity of the initial orbit and because this way it’s easier to
choose the point at which to maneuver.
After that, instead of a probably more convenient bi-tangent transfer, a bi-elliptical maneuver with
𝑟𝑏 = 2000𝑘𝑚 will be carried out to check whether the intuition that this kind of maneuver may be less
convenient than the other two methods, both time and Δ𝑉 wise, is actually confirmed by the data or
not.

The variation of all the Keplerian elements during the trajectory, the values of the impulses and the
time required to complete this strategy can be seen in table A.8. A 3D representation of the initial/final
orbits and of the spacecraft’s trajectory can be seen in figure 4.4.
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4.3. Graphical Representations

4.3.1. Standard Method

Figure 4.1: 3D representation of the trajectory described by the
spacecraft in the Standard Method

4.3.2. Method 1

Figure 4.2: 3D representation of the trajectory described by the
spacecraft in Method 1
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4.3.3. Method 2

Figure 4.3: 3D representation of the trajectory described by the
spacecraft in Method 2

4.3.4. Method 3

Figure 4.4: 3D representation of the trajectory described by the
spacecraft in Method 3
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5 | Conclusions
By analyzing each method in regards to time and Δ𝑉 requirements, we can classify the methods

proposed in this report in order of convenience.
As is clearly deductible from the tables in the Appendix, method 2 is the best choice regarding the
required Δ𝑡, at just 5 hours and 20 minutes, followed by the standard method clocking in at 6 hours
and 20 minutes, a 19% increase over the best method.
These two methods can be very useful if the mission is time critical, so if it requires the spacecraft to
reach the destination point as quickly as possible.
Method 1 and 3 are way worse than the other two methods, requiring respectively 9 hours and 33
minutes and 10 hours and 29 minutes, which is almost double the time required by method 2.

If the mission is weight, rather than time, restrained, focusing on choosing the strategy that requires
the least fuel is obviously the way to go.
The best way to analyze which strategy requires the less fuel is to look at the total impulse required
to complete all the maneuvers, as the value of the impulse is directly correlated to the amount of fuel
required.
As is clearly visible from the tables in the Appendix, the strategy with the lower fuel requirement
is, just barely, method 1 (5.4616 𝑘𝑚

𝑠
), with method 2 (5.5485 𝑘𝑚

𝑠
) coming close behind it with just a

1.59% increase and with method 3 and the standard one requiring respectively an increase of 9.33%
and 7.32%.

The overall best, most balanced strategy out of the four proposed in this report is clearly method 2,
which requires an hour less than the second-best method, balanced by just a 0.0869 𝑘𝑚

𝑠
increase in the

required total impulse over the least impulse-heavy strategy.
The fact that method 3 is way worse than all other methods, is justified and explained in 5.1, which

shows the Δ𝑉 required to complete a bi-tangent maneuver to the perigee, one to the apogee, and a
bi-elliptical transfer related to the proportion between the perigee radius of the initial orbit over the
one of the final orbit.
In the graph below, the vertical line shows the proportion between the perigee radii of the two orbits
used in this report. As it is clearly deductible, both bi-tangent options are way more convenient a than
bi-elliptical transfer, with the transfer to the perigee barely beating the transfer to the apogee.
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A| Appendix

𝑡 (s) 𝑎 (km) 𝑒 (-) 𝑖 (deg) Ω (deg) 𝜔 (deg) 𝜃 (deg) Δ𝑣 ( 𝑘𝑚
𝑠
)

0 9759.46565 0.07572 19.68167 41.76403 56.33149 152.07961 −

5619.2 9759.46565 0.07572 19.68167 41.76403 56.33149 358.40229 4.2317

9759.46565 0.07572 49.41188 80.67245 22.82664 358.40229

7026.0 9759.46565 0.07572 49.41188 80.67245 22.82664 58.60212 0.8285

9759.46565 0.07572 49.41188 80.67245 140.03089 301.39872

8396.3 9759.46565 0.07572 49.41188 80.67245 140.03089 0.00000 0.6353

12582.58282 0.28310 49.41188 80.67245 140.03089 0.00000

15419.5 12582.58282 0.28310 49.41188 80.67245 140.03089 180.00000 (−)0.1663

12060.0 0.33870 49.41188 80.67245 140.03089 180.00000

22873.9 12060.0 0.33870 49.41188 80.67245 140.03089 47.84197 −

Total Δ𝑇 = 22873.9 Total Δ𝑣 = 5.8619 𝑘𝑚
𝑠

Table A.2: Standard Method

𝑡 (s) 𝑎 (km) 𝑒 (-) 𝑖 (deg) Ω (deg) 𝜔 (deg) 𝜃 (deg) Δ𝑣 ( 𝑘𝑚
𝑠
)

0 9759.46565 0.07572 19.68167 41.76403 56.33149 152.07961 −

5619.2 9759.46565 0.07572 19.68167 41.76403 56.33149 358.40229 4.2317

9759.46565 0.07572 49.41188 80.67245 22.82664 358.40229

10453.2 9759.46565 0.07572 49.41188 80.67245 22.82664 180.00000 0.2379

10498.48766 0.00000 49.41188 80.67245 22.82664 180.00000

19291.1 10498.48766 0.00000 49.41188 80.67245 140.03089 0.00000 0.6216

13321.60482 0.21192 49.41188 80.67245 140.03089 0.00000

26942.1 13321.60482 0.21192 49.41188 80.67245 140.03089 180.00000 (−)0.3704

12060.0 0.33870 49.41188 80.67245 140.03089 180.00000

34396.5 12060.0 0.33870 49.41188 80.67245 140.03089 47.84197 −

Total Δ𝑇 = 34396.5𝑠 Total Δ𝑣 = 5.4616 𝑘𝑚
𝑠

Table A.4: Method 1
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𝑡 (s) 𝑎 (km) 𝑒 (-) 𝑖 (deg) Ω (deg) 𝜔 (deg) 𝜃 (deg) Δ𝑣 ( 𝑘𝑚
𝑠
)

0 9759.46565 0.07572 19.68167 41.76403 56.33149 152.07961 −

5619.2 9759.46565 0.07572 19.68167 41.76403 56.33149 358.40229 4.2317

9759.46565 0.07572 49.41188 80.67245 22.82664 358.40229

10453.2 9759.46565 0.07572 49.41188 80.67245 22.82664 180.00000 0.2379

10498.48766 0.00000 49.41188 80.67245 22.82664 180.00000

13938.5 10498.48766 0.00000 49.41188 80.67245 140.03089 180.00000 (−)0.4362

9236.88282 0.13658 49.41188 80.67245 140.03089 180.00000

18355.9 9236.88282 0.13658 49.41188 80.67245 140.03089 0.00000 0.6427

12060.0 0.33870 49.41188 80.67245 140.03089 0.00000

19220.1 12060.0 0.33870 49.41188 80.67245 140.03089 47.84197 −

Total Δ𝑇 = 19220.1𝑠 Total Δ𝑣 = 5.5485 𝑘𝑚
𝑠

Table A.6: Method 2

𝑡 (s) 𝑎 (km) 𝑒 (-) 𝑖 (deg) Ω (deg) 𝜔 (deg) 𝜃 (deg) Δ𝑣 ( 𝑘𝑚
𝑠
)

0 9759.46565 0.07572 19.68167 41.76403 56.33149 152.07961 −

5619.2 9759.46565 0.07572 19.68167 41.76403 56.33149 358.40229 4.2317

9759.46565 0.07572 49.41188 80.67245 22.82664 358.40229

10453.2 9759.46565 0.07572 49.41188 80.67245 22.82664 180.00000 0.2379

10498.48766 0.00000 49.41188 80.67245 140.03089 180.00000

19291.1 10498.48766 0.00000 49.41188 80.67245 140.03089 0.00000 0.8948

15249.24382 0.31154 49.41188 80.67245 140.03089 0.00000

28661.4 15249.24382 0.31154 49.41188 80.67245 140.03089 180.00000 (−)0.3332

13987.63900 0.42983 49.41188 80.67245 140.03089 180.00000

36893.3 13987.63900 0.42983 49.41188 80.67245 140.03089 0.00000 (−)0.2738

12060.0 0.33870 49.41188 80.67245 140.03089 0.00000

37757.5 12060.0 0.33870 49.41188 80.67245 140.03089 47.84197 −

Total Δ𝑇 = 37757.5𝑠 Total Δ𝑣 = 5.9714 𝑘𝑚
𝑠

Table A.8: Method 3
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